Самопрограммирование avr. Что нужно для программирования микроконтроллеров? Музыкальная шкатулка - простая поделка для начинающих

Декабрь 2015 г.

1. Преимущества предлагаемого способа

Схемы устройств на микроконтроллерах (МК) обычно отличаются сочетанием двух трудносовместимых качеств: максимальной простотой и высокой функциональностью. К тому же функциональность может в дальнейшем меняться и расширяться без внесения каких-либо изменений в схему - путём лишь замены программы (перепрошивкой). Эти особенности объясняются тем, что создатели современных МК постарались разместить на одном кристалле всё, что только может потребоваться разработчику электронного устройства - по крайней мере настолько, насколько это возможно. В результате произошло смещение акцента со схемотехнического и монтажного на программный. С использованием МК теперь меньше приходится "нагружать" схему деталями, между компонентами становится меньше соединений. Это, конечно, делает схему более привлекательной для её повторения как опытными, так и начинающими электронщиками. Но, как обычно, за всё приходится платить. Здесь тоже не обошлось без своих сложностей. Если купить новый МК, установить его в правильно собранную из исправных деталей схему и подать питание, то ничего не получится - устройство не будет работать. Микроконтроллеру нужна программа.

Казалось бы с этим тоже всё просто - в интернете можно встретить множество схем с бесплатными прошивками. Но тут возникает одна загвоздка: прошивку необходимо как-то "залить" в микроконтроллер. Для того, кто никогда этим раньше не занимался, такая задача зачастую становится проблемой и главным отталкивающим фактором, нередко заставляющим отказаться от прелестей использования МК и поискать схемы на "рассыпухе" и жесткой логике. А ведь всё не так уж сложно, как может показаться на первый взгляд.

Проанализировав публикации в интернете, можно заметить, что данная проблема решается чаще всего одним из двух путей: покупкой готового программатора или изготовлением самодельного. При этом публикуемые схемы самодельных программаторов очень часто неоправданно сложны - гораздо сложнее, чем это действительно необходимо. Конечно, если предполагается каждый день прошивать МК, лучше иметь "крутой" программатор. Но если надобность в такой процедуре возникает нечасто, от случая к случаю, то можно вообще обойтись без программатора. Нет, конечно, речь идет не о том, чтобы научиться делать это силой мысли. Имеется в виду, что понимая, как происходит взаимодействие программатора с микроконтроллером при записи и считывании информации в режиме его программирования, мы можем обойтись подручными средствами более широкого назначения. Эти средства должны будут заменить как программную, так и аппаратную части программатора. Аппаратная часть должна обеспечить физическое соединение с микросхемой МК, возможность подавать логические уровни на его входы и считывать данные с его выходов. Программная часть должна обеспечить работу алгоритма, управляющего всеми необходимыми процессами. Отметим также, что качество записи информации в МК не зависит от того, насколько "крутой" у вас программатор. Такого понятия, как "лучше записалось" или "хуже" не существует. Есть только два варианта: "записалось" и "не записалось". Это объясняется тем, что непосредственно процессом записи внутри кристалла руководит сам МК. Нужно лишь обеспечить ему качественное питание (отсутствие помех и пульсаций) и правильно организовать интерфейс. Если по результатам контрольного считывания ошибок не выявлено, то все в порядке - можно использовать контроллер по назначению.

Для того, чтобы, не имея программатора, записать в МК программу, нам потребуется преобразователь порта USB-RS232TTL и , а также . Конвертер USB-RS232TTL позволяет при помощи порта USB создать COM-порт, отличающийся от "настоящего" лишь тем, что на его входах и выходах используются логические уровни TTL, то есть напряжение в интервале от 0 до 5 вольт (подробнее можно почитать в статье " "). Такой конвертер в любом случае полезно иметь в "хозяйстве", так что если у вас его еще нет, непременно стоит приобрести. Что касается логических уровней, то в нашем случае TTL - это даже преимущество перед обычным COM-портом, потому что входы и выходы такого порта можно напрямую подключать к любому микроконтроллеру, питающемуся от напряжения 5 В, в том числе ATtiny и ATmega. Но не пытайтесь использовать обычный COM-порт - там используются напряжения в интервале от -12 до +12 В (либо -15...+15В). Непосредственное соединение с микроконтроллером в этом случае недопустимо!!!

Идея создания скрипта для программы "Перпетуум М", реализующего функции программатора, возникла после ознакомления с рядом публикаций в интернете, предлагающих те или иные решения по прошивке МК. В каждом случае обнаруживались серьезные недостатки или чрезмерные сложности. Часто попадались схемы программаторов, содержащие в себе микроконтроллер и при этом вполне серьезно давались советы типа: "... а чтобы запрограммировать микроконтроллер для этого программатора нам потребуется... правильно - другой программатор!". Далее предлагалось сходить к другу, поискать платную услугу и т.п. Качество программного обеспечения, распространяемого в сети для этих целей, также не впечатлило - замечено множество проблем как с функциональностью, так и с "мутностью" пользовательского интерфейса. Зачастую много времени нужно потратить, чтобы понять, как использовать программу - ее необходимо изучать даже ради осуществления простейших действий. Иная программа может долго и усердно что-то делать, но о том, что ничего в МК не записывается, пользователь узнает только после полного завершения всей прошивки и последующего контрольного считывания. Встречается и такая проблема: пользователь пытается выбрать из списка поддерживаемых кристаллов свой МК, а его в списке нет. В этом случае воспользоваться программой не удастся - внесение в список недостающих МК, как правило, не предусмотрено. Кроме того ручной выбор контроллера из списка выглядит странно, если учесть, что программатор во многих случаях может сам определить тип МК. Все это сказано не для того, чтобы облить грязью существующие продукты, а для того, чтобы объяснить причину появления скрипта к программе "Перпетуум М", описываемого в данной статье. Проблема действительно существует, и она касается в первую очередь новичков, которым не всегда удается преодолеть данную "стену", чтобы сделать свой первый шаг в мир микроконтроллеров. В предлагаемом скрипте учтены недостатки, обнаруженные в других программах. Реализована максимальная "прозрачность" работы алгоритма, предельно простой интерфейс пользователя, не требующий изучения и не оставляющий шанса запутаться и "не туда нажать". При отсутствии нужного МК среди поддерживаемых есть возможность самостоятельно добавить его описание, взяв нужные данные из документации, скачанной с сайта разработчика МК. И, самое главное - скрипт открыт для изучения и модификации. Каждый желающий может, открыв в текстовом редакторе, изучать и править его на свое усмотрение, изменяя на свой вкус существующие функции и добавляя недостающие.

Первая версия скрипта была создана в июне 2015 года. В этой версии реализована только поддержка Atmel"овских МК серий ATtiny и ATmega с функциями записи/чтения флэш-памяти, с настройкой конфигурационных бит, с автоматическим определением типа контроллера. Запись и чтение EEPROM не реализованы. Были планы дополнить функциональность скрипта: добавить запись и чтение EEPROM, реализовать поддержку PIC-контроллеров и т.д. По этой причине скрипт до сих пор не был опубликован. Но из-за нехватки времени осуществление задуманного затянулось, и, чтобы лучшее не становилось врагом хорошего, решено опубликовать имеющуюся версию. Если уже реализованных функций окажется недостаточно, прошу не огорчаться. В этом случае вы можете попробовать самостоятельно добавить нужную функцию. Не стану скрывать: идея создания данного скрипта изначально несет в себе еще и образовательный смысл. Разобравшись в алгоритме и добавив к нему что-то свое, вы сможете глубже понять работу МК в режиме программирования, чтобы в будущем не оказаться в положении девушки перед сломавшимся автомоблем, задумчиво разглядывающей его внутренности и не понимающей, почему "не едет".

2. Интерфейс МК в режиме программирования

Существует несколько различных способов перевести контроллер в режим программирования и работать с ним в этом режиме. Самым простым в реализации для контроллеров серий ATtiny и ATmega является, пожалуй, SPI. Им и воспользуемся.

Но, прежде чем приступить к рассмотрению сигналов, необходимых для формирования SPI, сделаем ряд оговорок. Микроконтроллер имеет конфигурационные биты. Это что-то вроде тумблеров, переключение которых позволяет менять некоторые свойства микросхемы в соответствии с нуждами проекта. Физически это ячейки энергонезависимой памяти, вроде тех, в которые записывается программа. Разница в том, что их очень мало (до трех байт для ATmega), и они не входят в адресное пространство какой-либо памяти. Запись и чтение конфигурационных данных выполняется отдельными командами режима программирования МК. Сейчас важно отметить, что некоторые конфигурационные биты влияют на саму возможность использования SPI. При некоторых их значениях может оказаться, что SPI нельзя будет использовать. Если вам попадется такой микроконтроллер, то метод, предлагаемый в данной статье, не поможет. В этом случае придется либо изменить настройки конфигурационных бит в программаторе, который поддерживает иной режим программирования, либо использовать другой микроконтроллер. Но данная проблема касается только бывших в употреблении МК, либо тех, с которыми уже кто-то неудачно "поигрался". Дело в том, что новые МК поставляются с настройками конфигурационных бит, не препятствующими использованию SPI. Это подтверждается и результатами испытаний скрипта-программатора для программы "Перпетуум М", во время которых были успешно прошиты четыре разных МК (ATmega8, ATmega128, ATtiny13, ATtiny44). Все они были новые. Начальная настройка конфигурационных бит соответствовала документации и не мешала использованию SPI.

Учитывая сказанное выше, следует обращать внимание на следующие биты. Бит SPIEN в явном виде разрешает или запрещает использование SPI, следовательно в нашем случае его значение должно быть разрешающим. Бит RSTDISBL способен превратить один из выводов микросхемы (заранее предопределенный) во вход сигнала "сброс", либо не превратить (в зависимости от записанного в этот бит значения). В нашем случае вход "сброс" необходим (при его отсутствии не получится перевести МК в режим программирования через SPI). Есть еще биты группы CKSEL, задающие источник тактового сигнала. Они не препятствуют использованию SPI, но их тоже необходимо иметь в виду, потому что при полном отсутствии тактовых импульсов, либо при их частоте ниже допустимой для заданной скорости SPI, также ничего хорошего не получится. Обычно у новых МК, имеющих внутренний RC-генератор, биты группы CKSEL настроены на его использование. Нас это вполне устраивает - тактирование обеспечено без каких-либо дополнительных усилий с нашей стороны. Ни кварцевый резонатор припаивать, ни внешний генератор подключать не нужно. Если же указанные биты содержат иную настройку, придется позаботится о тактировании в соответствии с настройкой. В этом случае может потребоваться подключение к МК кварцевого резонатора или внешнего тактового генератора. Но в рамках данной статьи мы не будем рассматривать, как это делается. Примеры подключения МК для программирования, содержащиеся в данной статье, рассчитаны на самый простой случай.

Рис. 1. Обмен данными по SPI в режиме программирования

Теперь обратимся к рисунку 1, взятому из документации на МК ATmega128A. На нем показан процесс передачи одного байта в МК и одновременного приема одного байта из МК. Оба эти процесса, как видим, используют одни и те же тактовые импульсы, поступающие от программатора в микроконтроллер на его вход SCK - один из выводов микросхемы, для которого в режиме программирования по SPI отведена такая роль. Еще две сигнальные линии обеспечивают прием и передачу данных по одному биту за такт. Через вход MOSI данные поступают в микроконтроллер, а с выхода MISO снимаются считываемые данные. Обратите внимание на две пунктирные линии, проведенные от SCK к MISO и MOSI. Они показывают, в какой момент микроконтроллер "проглатывает" выставленный на входе MOSI бит данных, и в какой момент сам выставляет на выход MISO свой бит данных. Все достаточно просто. Но чтобы ввести МК в режим программирования нам еще потребуется сигнал RESET. Не забудем также про общий провод GND и питание VCC. В общей сложности выходит, что к микроконтроллеру для его прошивки по SPI нужно подключить всего 6 проводков. Ниже разберем это подробнее, а пока добавим, что обмен данными с МК в режиме программирования по SPI выполняется пакетами по 4 байта. Первый байт каждого пакета в основном полностью отводится под кодирование команды. Второй байт в зависимости от первого может быть продолжением кода команды, либо частью адреса, а может иметь произвольное значение. Третий байт используется в основном для передачи адресов, но во многих командах может иметь произвольное значение. Четвертый байт обычно передает данные, либо имеет произвольное значение. Одновременно с передачей четвертого байта в некоторых командах принимаются данные, поступающие из МК. Подробности по каждой команде можно найти в документации на контроллер в таблице под названием "SPI Serial Programming Instruction Set". Пока отметим лишь, что весь обмен с контроллером построен из последовательности 32-битных пакетов, в каждом из которых передается не более одного байта полезной информации. Это не очень оптимально, но в целом работает неплохо.

3. Подключение МК для программирования

Чтобы обеспечить подачу на входы микроконтроллера всех необходимых сигналов для организации интерфейса SPI и чтение данных с его выхода MISO, не обязательно создавать программатор. Это легко осуществить при помощи самого обыкновенного конвертера USB-RS232TTL.

В интернете часто можно встретить информацию о том, что такие конвертеры неполноценны, что с ними ничего серьезного сделать нельзя. Но в отношении большинства моделей конвертеров такое мнение ошибочно. Да, существуют в продаже конвертеры, у которых доступны не все входы и выходы по сравнению со стандартным COM-портом (например, только TXD и RXD), имеющие при этом неразборную конструкцию (микросхема залита пластмассой - невозможно добраться до ее выводов). Но такие и покупать не стоит. В некоторых случаях получить недостающие входы и выходы порта можно, подпаяв проводки непосредственно к микросхеме. Пример такого "усовершенствованного" конвертера показан на рисунке 2 (микросхема PL-2303 - подробнее о назначении ее выводов в статье " "). Это одна из самых дешевых моделей, но обладающая своими преимуществами при использовании в самодельных конструкциях. Широко распространены и полнофункциональные шнуры-переходники со стандартным девятиконтактным разъемом на конце, как у COM-порта. От обычного COM-порта они отличаются только уровнями TTL и несовместимостью с устаревшим программным обеспечением и некоторым старым оборудованием. Можно еще отметить, что шнуры на микросхеме CH34x на различных экстремальных тестах показывают себя гораздо более надежными и стабильными по сравнению с преобразователями на PL-2303. Впрочем, при обычном использовании разница не заметна.

При выборе конвертера USB-RS232TTL следует также обращать внимание на совместимость его драйвера с версией используемой операционной системы.

Рассмотрим подробнее принцип соединения микроконтроллера и конвертера USB-RS232TTL на примере четырех разных моделей МК: ATtiny13, ATtiny44, ATmega8 и ATmega128. На рисунке 3 показана общая схема такого соединения. Вас может удивить, что сигналы RS232 (RTS, TXD, DTR и CTS) используются не по назначению. Но не стоит об этом беспокоиться: программа "Перпетуум М" способна работать с ними напрямую - устанавливать значения на выходах и читать состояния входа. Во всяком случае широко распространенные конвертеры USB-RS232TTL на микросхемах CH34x и PL-2303 такую возможность обеспечивают - это проверено. С другими популярными конвертерами также проблем быть не должно, так как для доступа к порту используются стандартные функции Windows.

Резисторы, показанные на общей схеме, в принципе можно не устанавливать, но все-таки лучше установить. Каково их назначение? Используя ТТЛ"овские входы и выходы конвертера и пятивольтное питание микроконтроллера, мы тем самым избавляемся от необходимости согласования логических уровней - все и так вполне корректно. Значит, соединения могут быть непосредственными. Но во время экспериментов бывает всякое. Например по закону подлости отвертка может упасть как раз в то место, куда она никак не могла бы упасть, и замкнуть то, что ни в коем случае нельзя замыкать. В роли "отвертки", конечно, может оказаться все, что угодно. Резисторы в этом случае иногда уменьшают последствия. Еще одно их назначение состоит в устранении возможного конфликта выходов. Дело в том, что по окончании программирования микроконтроллер переходит в обычный режим работы, и может так получиться, что его вывод, соединенный с выходом конвертера (RTS, TXD или DTR) тоже становится выходом, согласно только что записанной в МК программе. В этом случае будет очень нехорошо, если два напрямую соединенных выхода будут "бороться" - пытаться установить разные логические уровни. В такой "борьбе" кто-то может и "проиграть", а нам этого не надо.

Номиналы трех резисторов выбраны на уровне 4,3 КОм. Это касается соединений выход конвертера - вход микроконтроллера. Точность резисторов роли не играет: можно уменьшить их сопротивление до 1 КОм или увеличить до 10 КОм (но во втором случае увеличивается риск помех при использовании длинных проводов на пути к МК). Что же касается соединения вход конвертера (CTS) - выход микроконтроллера (MISO), то здесь применен резистор сопротивлением 100 Ом. Это объясняется особенностями входа использованного конвертера. Во время испытаний был использован конвертер на микросхеме PL-2303, входы которой, судя по всему, подтянуты к плюсу питания относительно низким сопротивлением (порядка нескольких сот Ом). Чтобы "перебить подтяжку" пришлось поставить резистор со столь маленьким сопротивлением. Впрочем, можно его вообще не ставить. На конвертере это всегда вход. Выходом он стать не может, а значит, конфликта выходов не будет при любом развитии событий.

Если микросхема имеет отдельный вывод AVCC для питания аналогово-цифрового преобразователя (например, ATmega8 или ATmega128), его следует соединить с выводом общего питания VCC. Некоторые микросхемы имеют более одного вывода питания VCC или более одного GND. Например, ATmega128 имеет 3 вывода GND и 2 вывода VCC. В постоянной конструкции одноименные выводы лучше соединить между собой. В нашем же случае на время программирования можно задействовать по одному выводу VCC и GND.

А вот как выглядит подключение ATtiny13. На рисунке показано назначение выводов, используемых при программировании через SPI. Рядом на фото - как временное подключение выглядит в реальности.


Кто-то может сказать, что это несерьезно - соединения на проводках. Но мы же с вами люди здравомыслящие. Наша цель состоит в том, чтобы запрограммировать микроконтроллер, затратив на это минимум времени и прочих ресурсов, а не в том, чтобы перед кем-то покрасоваться. Качество при этом не страдает. Метод "на проводках" в данном случае вполне эффективен и оправдан. Прошивка контроллера - процедура разовая, поэтому нет смысла обвешивать ее "стразиками". Если же предполагается менять прошивку в дальнейшем, не извлекая контроллер из схемы (в готовом изделии), то это учитывается в монтаже при изготовлении устройства. Обычно для этой цели устанавливается разъем (RESET, SCK, MOSI, MISO, GND), а МК может быть прошит даже после установки на плату. Но это уже творческие изыски. Мы же рассматриваем самый простой случай.

Теперь перейдем к МК ATtiny44. Здесь все примерно так же. По рисунку и фото даже новичку не составит труда разобраться с подключением. Подобно ATtiny44 можно подключать МК ATtiny24 и ATtiny84 - назначение выводов у этой троицы совпадает.


Еще один пример временного подключения контроллера для его программирования - ATmega8. Здесь выводов побольше, но принцип тот же - несколько проводков, и вот уже контроллер готов к "заливке" в него информации. Лишний черный провод на фото, идущий от вывода 13, в программировании участия не принимает. Он предназначен для снятия с него звукового сигнала после выхода МК из режима программирования. Это связано с тем, что во время отладки скрипта для "Перпетуум М" в МК закачивалась программа музыкальной шкатулки.


Часто один контроллер выпускается в разных корпусах. При этом назначение выводов для каждого корпуса распределено по-своему. Если корпус вашего контроллера не похож на тот, что изображен на рисунке, уточните назначение выводов по технической документации, скачать которую можно с сайта разработчика МК.

Для полноты картины посмотрим подключение микросхемы МК с большим числом "ножек". Назначение лишнего черного провода на фото, идущего от вывода 15, точно такое же, как в случае с ATmega8.


Вероятно, вы уже убедились, что все достаточно просто. Кто умеет считать выводы у микросхем (от метки по кругу против часовой стрелки), тот разберется. И не забывайте про аккуратность. Микросхемы любят аккуратных и не прощают небрежного к себе отношения.

Прежде чем переходить к программной части, убедитесь, что драйвер конвертера USB-RS232TTL корректно установлен (проверьте диспетчер устройств Windows). Запомните или запишите номер виртуального COM-порта, появляющегося при подключении конвертера. Этот номер нужно будет вписать в текст скрипта, о котором читайте ниже.

4. Скрипт - программатор для "Перпетуум М"

С аппаратной частью "программатора" разобрались. Это уже полдела. Теперь осталось разобраться с программной частью. Ее роль будет выполнять программа "Перпетуум М" под управлением скрипта, в котором и реализованы все необходимые функции по взаимодействию с микроконтроллером.

Архив со скриптом следует распаковать в ту же папку, где находится программа perpetuum.exe. В этом случае при запуске файла perpetuum.exe на экран будет выводиться меню со списком установленных скриптов, среди которых будет строка "Программатор МК AVR" (она может быть единственной). Именно эта строка нам и потребуется.

Скрипт находится в папке PMS в файле "Программатор МК AVR.pms". Этот файл можно просматривать, изучать и править при необходимости в обычном текстовом редакторе вроде "Блокнота" Windows. Перед использованием скрипта скорее всего потребуется внести изменения в текст, связанные с настройкой порта. Для этого уточните в диспетчере устройств Windows имя используемого порта и, при необходимости, внесите соответствующую поправку в строку "ИмяПорта="COM4";" - вместо цифры 4 может стоять другая цифра. Также при использовании другой модели конвертера USB-RS232TTL может потребоваться изменение настроек инвертирования сигналов (строки скрипта, начинающиеся со слова "Высокий"). Проверить инвертирование сигналов конвертером USB-RS232TTL можно с помощью одного из примеров, содержащегося в инструкции к программе "Перпетуум М" (раздел функций для работы с портом).

Во вложенной папке MK_AVR находятся файлы с описаниями поддерживаемых контроллеров. Если нужного контроллера среди них не окажется, вы можете добавить нужный самостоятельно, действуя по аналогии. Возьмите за образец один из файлов, и при помощи текстового редактора введите необходимые данные, взяв их из документации на свой микроконтроллер. Главное - будьте внимательны, вводите данные без ошибок, иначе МК не запрограммируется, или запрограммируется неправильно. В исходной версии поддерживаются 6 микроконтроллеров: ATtiny13, ATtiny24, ATtiny44, ATtiny84, ATmega8 и ATmega128. В скрипте реализовано автоматическое распознавание подключенного контроллера - вручную указывать не нужно. При отсутствии считанного из МК идентификатора среди имеющихся описаний, выдается сообщение, что распознать контроллер не удалось.

В архиве со скриптом содержится также дополнительная информация. В папке "inc-файлы контроллеров AVR" находится очень полезная и обширная коллекция файлов описаний контроллеров. Эти файлы используются при написании собственных программ для МК. Еще четыре папки "MusicBox_..." содержат файлы с программой на Ассемблере и готовой к закачке в МК прошивкой отдельно для ATtiny13, ATtiny44, ATmega8 и ATmega128. Если вы уже подключили один из этих МК для программирования, как это предложено в данной статье, то можете прямо сейчас его прошить - получится музыкальная шкатулка. Об этом ниже.

При выборе в меню скриптов строчки "Программатор МК AVR", скрипт начинает исполняться. При этом он открывает порт, посылает в МК команду перехода в режим программирования, принимает подтверждение от МК об успешном переходе, запрашивает идентификатор МК и отыскивает описание данного МК по его идентификатору среди имеющихся файлов с описаниями. Если не находит нужного описания, выдает соответствеющее сообщение. Если же описание найдено, далее открывается главное меню программатора. Его скриншот вы можете видеть на рисунке 8. Далее разобраться не сложно - меню очень простое.

В первой версии скрипта некоторые функции полноценного программатора не реализованы. Например, нет возможности читать и писать в EEPROM. Но если вы откроете скрипт в текстовом редакторе, то увидите, что он имеет очень небольшой размер при том, что основное в нем уже реализовано. Это говорит о том, что добавить недостающие функции не так уж и сложно - язык очень гибкий, он позволяет в небольшой программе реализовать богатую функциональность. Но для большинства случаев хватит даже имеющихся функций.

Некоторые ограничения функциональности описаны непосредственно в тексте скрипта:
//реализована запись только с нулевого адреса (Extended Segment Address Record игнорируется, LOAD OFFSET - тоже)
//порядок и непрерывность следования записей в HEX-файле не проверяется
//контрольная сумма не проверяется
Это касается работы с HEX-файлом, из которого берется код прошивки для МК. Если этот файл не искажен, проверка контрольной суммы ни на что не повлияет. Если искажен - средствами скрипта это выявить не удастся. Остальные ограничения в большинстве случаев не помешают, но иметь в виду их все-таки нужно.

5. Музыкальная шкатулка - простая поделка для начинающих

Если у вас есть один из этих микроконтроллеров: ATtiny13, ATtiny44, ATmega8 или ATmega128, вы можете легко превратить его в музыкальную шкатулку или музыкальную открытку. Для этого достаточно записать в МК соответствующую прошивку - одну из тех четырех, которые размещены в папках "MusicBox_..." в одном архиве со скриптом. Коды прошивок хранятся в файлах с расширением ".hex". Использовать ATmega128 для такой поделки, конечно, "жирновато", как и ATmega8. Но это может быть полезно для тестирования или экспериментов, иначе говоря - в учебных целях. Тексты программ на Ассемблере также прилагаются. Программы создавались не с нуля - за основу была взята программа музыкальной шкатулки из книги А.В.Белова "Микроконтроллеры AVR в радиолюбительской практике". Исходная программа претерпела ряд существенных изменений:
1. адаптирована для каждого из четырех МК: ATtiny13, ATtiny44, ATmega8 и ATmega128
2. ликвидированы кнопки - к контроллеру вообще ничего не нужно подключать, кроме питания и звукоизлучателя (мелодии воспроизводятся одна за другой в бесконечном цикле)
3. длительность каждой ноты уменьшена на длительность паузы между нотами для устранения нарушения музыкального ритма
4. подключена восьмая мелодия, незадействованная в книжной версии
5. из субъективного: некоторые "улучшайзинги" для оптимизации и более легкого восприятия алгоритма

В некоторых мелодиях слышится фальшь и даже грубые ошибки, особенно в "Улыбке" - в середине. Коды мелодий взяты из книги (а точнее - скачаны с сайта автора книги вместе с исходным asm-файлом) и не подвергались изменениям. Судя по всему, в кодировке мелодий имеются ошибки. Но это не проблема - кто "дружит" с музыкой, без труда во всем разберется и исправит.

В ATtiny13 из-за отсутствия 16-битного счетчика для воспроизведения нот пришлось использовать 8-битный, что привело к некоторому снижению точности звучания нот. Но на слух это мало заметно.

Насчет конфигурационных бит. Их настройка должна соответствовать состоянию нового микроконтроллера. Если ваш МК ранее где-то использовался, нужно проверить состояние его конфигурационных бит, и, при необходимости, привести их в соответствие настройкам нового микроконтроллера. Узнать состояние конфигурационных бит нового микроконтроллера можно из документации на этот МК (раздел "Fuse Bits"). Исключение составляет ATmega128. У этого МК имеется бит M103C, который включает режим совместимости с более старым ATmega103. Активизация бита M103C сильно урезает возможности ATmega128, причем у нового МК этот бит активен. Нужно сбросить M103C в неактивное состояние. Для манипуляций с конфигурационными битами используйте соответствующий раздел меню скрипта-программатора.

Схему музыкальной шкатулки приводить нет смысла: в ней только микроконтроллер, питание и пьезозвукоизлучатель. Питание подается точно так же, как мы это проделали при программировании МК. Звукоизлучатель подключается между общим проводом (вывод GND контроллера) и одним из выводов МК, номер которого можно посмотреть в файле с ассемблерным кодом программы (*.asm). В начале текста программы для каждого МК в комментариях имеется строчка: "звуковой сигнал формируется на выводе ХХ". При завершении работы скрипта - программатора микроконтроллер выходит из режима программирования и переходит в обычный режим работы. Сразу же начинается воспроизведение мелодий. Подключив звукоизлучатель, можно это проверить. Оставлять звукоизлучатель подключенным во время программирования кристалла можно только в том случае, если звук снимается с вывода, не задействованного в SPI, иначе дополнительная емкость на выводе может помешать программированию.

В этой главе будет рассмотрена такая интересная особенность AVR, как самопрограммирование (имеется у многих моделей ATtiny и во всех моделях ATmega). Суть ее заключается в возможности изменять содержимое FLASH-памяти непосредственно из пользовательской программы. Микроконтроллеры Atmel были одними из первых в мире, в которых появилось это новшество. В разделе приведен пример загрузчика, использующего аппаратный интерфейс USART, и управляющей программы высокого уровня на языке Delphi.

Область применения

Какие же выгоды предоставляет способность самопрограммирования? Сначала может показаться, что такая возможность дает AVR такие же преимущества, какими, например, обладает любой процессор с Принстонской архитектурой. Это, во-первых, способность изменять собственные алгоритмы работы и, во-вторых, возможность вести отладку приложения, не прибегая к дополнительным аппаратным средствам. Но на практике ресурсов 8-разрядного микроконтроллера совершенно недостаточно для построения “самообучающихся” интеллектуальных систем. А что касается отладки, то сама структура FLASH-памяти здесь сводит на нет все достоинства самопрограммирования (возможность размещать коды программ в быстрой памяти SRAM у AVR отсутствует). Кроме того, переписывать на ходу секцию рабочего кода, что раньше делалось только с помощью программаторов, – довольно рискованное дело. Любая неточность здесь сразу приведет к сбою. И даже наличие самого аппаратного узла, отвечающего за смену “прошивки”, потенциально снижает надежность устройства. Если прикладная программа может изменять FLASH-память, то это может случиться и непроизвольно в результате какой-либо ошибки.

Однако, со временем оказалось, что все не так уж и плохо. Самопрограммирование позволяет успешно использовать FLASH-память, как альтернативу EEPROM. Рабочий ресурс FLASH, производимой по современной технологии, составляет ≈10000 циклов стирания/записи. Это показатель хоть и на порядок меньше, чем у EEPROM, но все равно очень высокий. Благодаря этому во FLASH-памяти можно хранить таблицы, списки, поправочные коэффициенты, а также любую другую информацию, требующую периодического не слишком частого обновления.

Но, наверное, самым главным достоинством самопрограммирования, является возможность создания практически любого интерфейса, для обновления программного обеспечения. Наибольшее практическое значение имеют компьютерные COM и USB. Последний из них в упрощенном виде может быть реализован программным способом. Процессом программирования со стороны AVR должна при этом управлять специальная программа-загрузчик boot-loader. Многие современные микроконтроллеры (а также новые модели AVR) поставляются с изначально “зашитым” на заводе загрузчиком, что дает возможность использовать очень простые программаторы, лишь немного потеряв в скорости программирования.

Перейти к следующей части:

Я не раз и не два говорил, что изучение МК надо начинать с ассемблера. Этому был посвящен целый курс на сайте (правда он не очень последовательный, но постепенно я его причесываю до адекватного вида) . Да, это сложно, результат будет не в первый день, но зато ты научишься понимать что происходит у тебя в контроллере. Будешь знать как это работает, а не по обезьяньий копировать чужие исходники и пытаться понять почему оно вдруг перестало работать. Кроме того, Си намного проще натворить быдлокода, который вылезет вилами в самый неподходящий момент.

К сожалению все хотят результат немедленно. Поэтому я решил пойти с другой стороны — сделать обучалку по Си, но с показом его нижнего белья. Хороший программист-эмбеддер всегда крепко держит свою железку за шкварник, не давая ей ни шагу ступить без разрешения. Так что будет вначале Си код, потом то что родил компилятор и как все это работает на самом деле:)

С другой стороны у Си сильная сторона это переносимость кода. Если, конечно, писать все правильно. Разделяя алгоритмы работы и их железные реализации в разные части проекта. Тогда для переноса алгоритма в другой МК достаточно будет переписать только интерфейсный слой, где прописано все обращение к железу, а весь рабочий код оставить как есть. И, конечно же, читаемость. Сишный исходник проще понять с первого взгляда (хотя.. мне, например, уже пофигу на что фтыкать — хоть си, хоть асм:)), но, опять же, если правильно все написать. Этим моментам я тоже буду уделять внимание.

В качестве подопытной железки на которой будет ставиться львинная доля всех примеров будет моя отладочная плата .

Первая программа на Си для AVR

Выбор компилятора и установка среды
Для AVR существует множество разных компиляторов Си:
В первую очередь это IAR AVR C — почти однозначно признается лучшим компилятором для AVR, т.к. сам контроллер создавался тесном сотрудничистве Atmel и спецов из IAR. Но за все приходится платить. И этот компилятор мало того, что является дорогущим коммерческим софтом, так еще обладает такой прорвой настроек, что просто взять и скомпилить в нем это надо постраться. У меня с ним правда не срослось дружбы, проект загнивал на странных ошибках на этапе линковки (позже выяснил, что это был кривой кряк).

Вторым идет WinAVR GCC — мощный оптимизирующий компилятор. Полный опенсорц, кроссплатформенный, в общем, все радости жизни. Еще он отлично интегрируется в AVR Studio позволяя вести отладку прямо там, что адски удобно. В общем, я выбрал его.

Также есть CodeVision AVR C — очень популярный компилятор. Стал популярен в связи со своей простотой. Рабочую программу в нем получить можно уже через несколько минут — мастер стартового кода этом сильно способствует, штампуя стандартыне инициализации всяких уартов. Честно говоря, я как то с подозрением к нему отношусь — как то раз приходилось дизасмить прогу написаную этим компилером, каша какая то а не код получалась. Жуткое количество ненужных телодвижений и операций, что выливалось в неслабый обьем кода и медленное быстродействие. Впрочем, возможно тут была ошибка в ДНК писавшего исходную прошивку. Плюс он хочет денег. Не так много как IAR, но ощутимо. А в деморежиме дает писать не более чем 2кб кода.
Кряк конечно есть, но если уж воровать, так миллион, в смысле IAR:)

Еще есть Image Craft AVR C и MicroC от микроэлектроники. Ни тем ни другим пользоваться не приходилось, но вот SWG очень уж нахваливает MicroPascal , мол жутко удобная среда программирования и библиотеки. Думаю MicroC не хуже будет, но тоже платный.

Как я уже сказал, я выбра WinAVR по трем причинам: халявный, интегрируется в AVR Studio и под него написана просто прорва готового кода на все случаи жизни.

Так что качай себе инсталяху WinAVR с и AVR Studio. Далее вначале ставится студия, потом, сверху, накатывается WinAVR и цепляется к студии в виде плагина. Настоятельно рекомендую ставить WinAVR по короткому пути, что то вроде C:\WinAVR тем самым ты избежишь кучи проблем с путями.

Cоздание проекта
Итак, студия поставлена, Си прикручен, пора бы и попробовать что нибудь запрограммировать. Начнем с простого, самого простого. Запускай студию, выбирай там новый проект, в качестве компилятора AVR GCC и вписывай название проекта.

Открывается рабочее поле с пустым *.c файлом.

Теперь не помешает настроить отображение путей в закладках студии. Для этого слазь по адресу:
Меню Tools — Options — General — FileTabs и выбираем в выпадающем списке «Filename Only». Иначе работать будет невозможно — на вкладке будет полный путь файла и на экране будет не более двух трех вкладок.

Настройка проекта
Вообще, классическим считается создание make файла в котором бы были описаны все зависимости. И это, наверное, правильно. Но мне, выросшему на полностью интегрированных IDE вроде uVision или AVR Studio этот подход является глубоко чуждым. Поэтому буду делать по своему, все средствами студии.

Тыкай в кнопку с шестеренкой.


Это настройки твоего проекта, а точнее настройки автоматической генерации make файла. На первой странице надо всего лишь вписать частоту на которой будет работать твой МК. Это зависит от фьюз битов, так что считаем что частота у нас 8000000Гц.
Также обрати внимание на строку оптимизации. Сейчас там стоит -Os это оптимизация по размеру. Пока оставь как есть, потом можешь попробовать поиграться с этим параметром. -O0 это отстутсвие оптимизации вообще.

Следующим шагом будет настройка путей. Первым делом добавь туда директорию твоего проекта — будешь туда подкладывать сторонние библиотеки. В списке появится путь «.\»

Make файл сгенерирован, его ты можешь поглядеть в папке default в своем проекте, просто пробегись глазами, посмотри что там есть.


На этом пока все. Жми везде ОК и переходи в исходник.

Постановка задачи
Чистый лист так и подмывает воплотить какую нибудь хитрую задумку, так как банальное мигание диодом уже не вставляет. Давай уж сразу брать быка за рога и реализуем связь с компом — это первым делом что я делаю.

Работать будет так:
При приходе по COM порту единички (код 0х31) будем зажигать диодик, а при приходе нуля (код 0х30) гасить. Причем сделано будет все на прерываниях, а фоновой задачей будет мигание другого диода. Простенько и со смыслом.

Собираем схему
Нам надо соединить модуль USB-USART конвертера с выводами USART микроконтроллера. Для этого берем перемычку из двух проводков и накидывам на штырьки крест накрест. То есть Rx контроллера соединяем с Tx конвертера, а Tx конвертера с Rx контроллера.

Получится, в итоге вот такая схема:


Подключение остальных выводов, питания, сброса не рассматриваю, оно стандартное

Пишем код

Сразу оговорюсь, что я не буду углубляться конкретно в описание самого языка Си. Для этого существует просто колоссальное количество материала, начиная от классики «Язык программирования Си» от K&R и заканчивая разными методичками.

Одна такая метода нашлась у меня в загашнике, я когда то именно по ней изучал этот язык. Там все кратко, понятно и по делу. Я ее постепенно верстаю и перестаскиваю на свой сайт.

Там правда еще не все главы перенесены, но, думаю, это ненадолго.

Вряд ли я опишу лучше, поэтому из учебного курса, вместо подробного разьяснения сишных тонкостей, я буду просто давать прямые линки на отдельные страницы этой методички.

Добавляем библиотеки.
Первым делом мы добавляем нужные библиотеки и заголовки с определениями. Ведь Си это универсальный язык и ему надо обьяснить что мы работаем именно с AVR, так что вписывай в исходник строку:

1 #include

#include

Этот файл находится в папке WinAVR и в нем содержится описание всех регистров и портов контроллера. Причем там все хитро, с привязкой к конкретному контроллеру, который передается компилятором через make файл в параметре MCU и на основании этой переменной в твой проект подключается заголовочный файл с описанием адресов всех портов и регистров именно на этот контроллер. Во как! Без него тоже можно, но тогда ты не сможешь использовать символические имена регистров вроде SREG или UDR и придется помнить адрес каждого вроде «0xC1», а это голову сломать.

Сама же команда #include <имя файла> позволяет добавить в твой проект содержимое любого текстового файла, например, файл с описанием функций или кусок другого кода. А чтобы директива могла этот файл найти мы и указывали пути к нашему проекту (директория WinAVR там уже по дефолту прописана).

Главная функция.
Программа на языке Си вся состоит из функций. Они могут быть вложенными и вызываться друг из друга в любом порядке и разными способами. Каждая функция имеет три обязательных параметра:

  • Возвращаемое значение, например, sin(x) возвращает значение синуса икс. Как в математике, короче.
  • Передаваемые параметры, тот самый икс.
  • Тело функции.

Все значения передаваемые и возвращаемые обязаны быть какого либо типа, в зависимости от данных.

Любая программа на Си должна содержать функцию main как точку входа в главную прогрмму, иначе это нифига не Си:). По наличию main в чужом исходнике из миллиона файлов можно понять, что это и есть головная часть программы откуда начинается все. Вот и зададим:

1 2 3 4 5 int main(void ) { return 0 ; }

int main(void) { return 0; }

Все, первая простейшая программа написана, не беда что она ничего не делает, мы же только начали.

Разберем что же мы сделали.
int это тип данных которая функция main возвращает.

Конечно, в микроконтроллере main ничего вернуть в принципе не может и по идее должна быть void main(void) , но GCC изначально заточен на PC и там программа может вернуть значение операционной системе по завершении. Поэтому GCC на void main(void) ругается Warning’ом.

Это не ошибка, работать будет, но я не люблю варнинги.

void это тип данных которые мы передаем в функцию, в данном случае main также не может ничего принять извне, поэтом void — пустышка. Заглушка, применяется тогда когда не надо ничего передавать или возвращать.

Вот такие вот { } фигурные скобочки это программный блок, в данном случае тело функции main , там будет распологаться код.

return — это возвращаемое значение, которое функция main отдаст при завершении, поскольку у нас int, то есть число то вернуть мы должны число. Хотя это все равно не имеет смысла, т.к. на микроконтроллере из main нам выходить разве что в никуда. Я возвращаю нуль. Ибо нефиг. А компилятор обычно умный и на этот случай код не генерит.
Хотя, если извратиться, то из main на МК выйти можно — например вывалиться в секцию бутлоадера и исполнить ее, но тут уже потребуется низкоуровневое ковыряние прошивки, чтобы подправить адреса перехода. Ниже ты сам увидишь и поймешь как это сделать. Зачем? Вот это уже другой вопрос, в 99.999% случаев это нафиг не надо:)

Сделали, поехали дальше. Добавим переменную, она нам не особо нужна и без нужны вводить переменные не стоит, но мы же учимся. Если переменные добавляются внутри тела функции — то они локальные и существуют только в этой функции. Когда из функции выходишь эти переменные удаляются, а память ОЗУ отдается под более важные нужды. .

1 2 3 4 5 6 int main(void ) { unsigned char i; return 0 ; }

int main(void) { unsigned char i; return 0; }

unsigned значит беззнаковый. Дело в том, что в двоичном представлении у нас старший бит отводится под знак, а значит в один байт (char) влазит число +127/-128, но если знак отбросить то влезет уже от 0 до 255. Обычно знак не нужен. Так что unsigned .
i — это всего лишь имя переменной. Не более того.

Теперь надо проинициализировать порты и UART . Конечно, можно взять и подключить библиотеку и вызвать какой нибудь UartInit(9600); но тогда ты не узнаешь что же произошло на самом деле.

Делаем так:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 int main(void ) { unsigned char i; #define XTAL 8000000L #define baudrate 9600L #define bauddivider (XTAL/(16*baudrate)-1) #define HI(x) ((x)>>8) #define LO(x) ((x)& 0xFF) UBRRL = LO(bauddivider) ; UBRRH = HI(bauddivider) ; UCSRA = 0 ; UCSRB = 1 << RXEN| 1 << TXEN| 1 << RXCIE| 0 << TXCIE; UCSRC = 1 << URSEL| 1 << UCSZ0| 1 << UCSZ1; }

int main(void) { unsigned char i; #define XTAL 8000000L #define baudrate 9600L #define bauddivider (XTAL/(16*baudrate)-1) #define HI(x) ((x)>>8) #define LO(x) ((x)& 0xFF) UBRRL = LO(bauddivider); UBRRH = HI(bauddivider); UCSRA = 0; UCSRB = 1<

Страшна? На самом деле реалного кода тут всего пять последних строк. Все что #define это макроязык препроцессора. Почти та же ботва, что и в Ассемблере, но синтаксис несколько иной.

Они облегчат твои рутинные операции по вычислении нужных коэффициентов. В первой строке мы говорим что вместо XTAL можно смело подставлять 8000000, а L — указание типа, мол long — это тактовая частота процессора. То же самое baudrate — частота передачи данных по UART.

bauddivider уже сложней, вместо него будет подставлятся выражение вычисленное по формуле из двух предыдущих.
Ну, а LO и HI из этого результата возьмут младший и старший байты, т.к. в один байт оно явно может не влезть. В HI делается сдвиг икса (входной параметр макроса) восемь раз в вправо, в результате от него останется только старший байт. А в LO мы делаем побитовое И с числом 00FF, в результате останется только младший байт.

Так что все что сделано как #define можно смело выкинуть, а нужные числа подсчитать на калькуляторе и сразу же вписать их в строки UBBRL = …. и UBBRH = …..

Можно. Но! Делать этого КАТЕГОРИЧЕСКИ НЕЛЬЗЯ !

Работать будет и так и эдак, но у тебя в программе появятся так называемые магические числа — значения взятые непонятно откуда и непонятно зачем и если ты через пару лет откроешь такой проект то понять что это за значения будет чертовски трудно. Да и сейчас, захочешь ты изменить скорость, или поменяешь частоту кварца и все придется пересчитывать заново, а так поменял пару циферок в коде и все само. В общем, если не хочешь прослыть быдлокодером, то делай код таким, чтобы он легко читался, был понятен и легко модифицировался.

Дальше все просто:
Все эти «UBRRL и Со» это регистры конфигурации UART передатчика с помощью которого мы будем общаться с миром. И сейчас мы присвоили им нужные значения, настроив на нужную скорость и нужный режим.

Запись вида 1< Означает следующее: взять 1 и поставить ее на место RXEN в байте. RXEN это 4й бит регистра UCSRB , так что 1< образует двоичное число 00010000, TXEN — это 3й бит, а 1< даст 00001000. Одиночная «|» это побитовое ИЛИ , так что 00010000 | 00001000 = 00011000. Таким же образом выставляются и добавляются в общуюу кучу остальные необходимые биты конфигурации. В итоге, собраное число записывается в UCSRB. Подробней расписано в даташите на МК в разделе USART. Так что не отвлекаемся на технические детали.

Готово, пора бы посмотреть что получилось. Жми на компиляцию и запуск эмуляции (Ctrl+F7).

Отладка
Пробежали всякие прогресс бары, студия переменилась и возле входа в функцию main появилась желтая стрелочка. Это то где процессор в текущий момент, а симуляция на паузе.

Дело в том, что изначально, на самом деле, она стояла на строке UBRRL = LO(bauddivider); Ведь то что у нас в define это не код, а просто предварительные вычисления, вот симулятор немного и затупил. Но теперь он осознал, первая инструкция выполнена и если ты залезешь в дерево I/O View , в раздел USART и поглядишь там на байт UBBRL то увидишь, что там значение то уже есть! 0х33.

Сделай еще один шаг. Погляди как изменится содержимое другого регистра. Так прошагай их все, обрати внимание на то, что все указаные биты выставляются как я тебе и говорил, причем выставляются одновременно для всего байта. Дальше Return дело не пойдет — программа кончилась.

Вскрытие
Теперь сбрось симуляцию в ноль. Нажми там Reset (Shift+F5) . Открывай дизассемблированный листинг, сейчас ты увидишь что происходит в контроллере в самом деле. View -> Disassembler . И не ЫЫАААА!!! Ассемблер!!! УЖОС!!! А НАДО. Чтобы потом, когда что то пойдет не так, не тупил в код и не задавал ламерских вопросах на форумах, а сразу же лез в потроха и смотрел где у тебя затык. Ничего там страшного нет.

Вначале будет ботва из серии:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 +00000000: 940C002A JMP 0x0000002A Jump +00000002: 940C0034 JMP 0x00000034 Jump +00000004: 940C0034 JMP 0x00000034 Jump +00000006: 940C0034 JMP 0x00000034 Jump +00000008: 940C0034 JMP 0x00000034 Jump +0000000A: 940C0034 JMP 0x00000034 Jump +0000000C: 940C0034 JMP 0x00000034 Jump +0000000E: 940C0034 JMP 0x00000034 Jump +00000010: 940C0034 JMP 0x00000034 Jump +00000012: 940C0034 JMP 0x00000034 Jump +00000014: 940C0034 JMP 0x00000034 Jump +00000016: 940C0034 JMP 0x00000034 Jump +00000018: 940C0034 JMP 0x00000034 Jump +0000001A: 940C0034 JMP 0x00000034 Jump +0000001C: 940C0034 JMP 0x00000034 Jump +0000001E: 940C0034 JMP 0x00000034 Jump +00000020: 940C0034 JMP 0x00000034 Jump +00000022: 940C0034 JMP 0x00000034 Jump +00000024: 940C0034 JMP 0x00000034 Jump +00000026: 940C0034 JMP 0x00000034 Jump +00000028: 940C0034 JMP 0x00000034 Jump

00000000: 940C002A JMP 0x0000002A Jump +00000002: 940C0034 JMP 0x00000034 Jump +00000004: 940C0034 JMP 0x00000034 Jump +00000006: 940C0034 JMP 0x00000034 Jump +00000008: 940C0034 JMP 0x00000034 Jump +0000000A: 940C0034 JMP 0x00000034 Jump +0000000C: 940C0034 JMP 0x00000034 Jump +0000000E: 940C0034 JMP 0x00000034 Jump +00000010: 940C0034 JMP 0x00000034 Jump +00000012: 940C0034 JMP 0x00000034 Jump +00000014: 940C0034 JMP 0x00000034 Jump +00000016: 940C0034 JMP 0x00000034 Jump +00000018: 940C0034 JMP 0x00000034 Jump +0000001A: 940C0034 JMP 0x00000034 Jump +0000001C: 940C0034 JMP 0x00000034 Jump +0000001E: 940C0034 JMP 0x00000034 Jump +00000020: 940C0034 JMP 0x00000034 Jump +00000022: 940C0034 JMP 0x00000034 Jump +00000024: 940C0034 JMP 0x00000034 Jump +00000026: 940C0034 JMP 0x00000034 Jump +00000028: 940C0034 JMP 0x00000034 Jump

Это таблица векторов прерываний. К ней мы еще вернемся, пока же просто посмотри и запомни, что она есть. Первая колонка — адрес ячейки флеша в которой лежит команда, вторая код команды третья мнемоника команды, та самая ассемблерная инструкция, третья операнды команды. Ну и автоматический коммент.
Так вот, если ты посмотришь, то тут сплошные переходы. А код команды JMP четырех байтный, в нем содержится адрес перехода, записанный задом наперед — младший байт по младшему адресу и код команды перехода 940C

0000002B: BE1F OUT 0x3F,R1 Out to I/O location

Запись этого нуля по адресу 0x3F, Если ты поглядишь в колонку I/O view, то ты увидишь что адрес 0x3F это адрес регистра SREG — флагового регистра контроллера. Т.е. мы обнуляем SREG, чтобы запустить программу на нулевых условиях.

1 2 3 4 +0000002C: E5CF LDI R28,0x5F Load immediate +0000002D: E0D4 LDI R29,0x04 Load immediate +0000002E: BFDE OUT 0x3E,R29 Out to I/O location +0000002F: BFCD OUT 0x3D,R28 Out to I/O location

0000002C: E5CF LDI R28,0x5F Load immediate +0000002D: E0D4 LDI R29,0x04 Load immediate +0000002E: BFDE OUT 0x3E,R29 Out to I/O location +0000002F: BFCD OUT 0x3D,R28 Out to I/O location

Это загрузка указателя стека. Напрямую грузить в I/O регистры нельзя, только через промежуточный регистр. Поэтому сначала LDI в промежуточный, а потом оттуда OUT в I/O. О стеке я тоже еще расскажу подробней. Пока же знай, что это такая динамическая область памяти, висит в конце ОЗУ и хранит в себе адреса и промежуточные переменные. Вот сейчас мы указали на то, откуда у нас будет начинаться стек.

00000032: 940C0041 JMP 0x00000041 Jump

Прыжок в сааааамый конец программы, а там у нас запрет прерываний и зацикливание наглухо само на себя:

1 2 +00000041: 94F8 CLI Global Interrupt Disable +00000042: CFFF RJMP PC-0x0000 Relative jump

00000041: 94F8 CLI Global Interrupt Disable +00000042: CFFF RJMP PC-0x0000 Relative jump

Это на случай непредвиденых обстоятельств, например выхода из функции main. Из такого зацикливания контроллер можно вывести либо аппаратным сбросом, либо, что вероятней, сбросом от сторожевой собаки — watchdog. Ну или, как я говорил выше, подправить это мест в хекс редакторе и ускакать куда нам душе угодно. Также обрати внимание на то, что бывает два типа переходов JMP и RJMP первый это прямой переход по адресу. Он занимает четыре байта и может сделать прямой переход по всей области памяти. Второй тип перехода — RJMP — относительный. Его команда занимает два байта, но переход он делает от текущего положения (адреса) на 1024 шага вперед или назад. И в его параметрах указывается смещение от текущей точки. Используется чаще, т.к. занимает в два раза меньше места во флеше, а длинные прееходы нужны редко.

1 +00000034: 940C0000 JMP 0x00000000 Jump

00000034: 940C0000 JMP 0x00000000 Jump

А это прыжок в самое начало кода. Перезагрузка своего рода. Можешь проверить, все вектора прыгают сюда. Из этого вывод — если ты сейчас разрешишь прерывания (они по дефолту запрещены) и у тебя прерывание пройзойдет, а обработчика нет, то будет программный сброс — программу кинет в самое начало.

Функция main. Все аналогично, даже можно и не описывать. Посмотри только что в регистры заносится уже вычисленное число. Препроцессор компилятора рулит!!! Так что никаких «магических» чисел!

1 2 3 4 5 6 7 8 9 10 11 12 <

00000036: E383 LDI R24,0x33 Load immediate +00000037: B989 OUT 0x09,R24 Out to I/O location 15: UBRRH = HI(bauddivider); +00000038: BC10 OUT 0x20,R1 Out to I/O location 16: UCSRA = 0; +00000039: B81B OUT 0x0B,R1 Out to I/O location 17: UCSRB = 1<

А вот тут косяк:

1 2 3 +0000003E: E080 LDI R24,0x00 Load immediate +0000003F: E090 LDI R25,0x00 Load immediate +00000040: 9508 RET Subroutine return

0000003E: E080 LDI R24,0x00 Load immediate +0000003F: E090 LDI R25,0x00 Load immediate +00000040: 9508 RET Subroutine return

Спрашивается, для чего это компилятор добавляет такую ботву? А это не что иное, как Return 0, функцию то мы определили как int main(void) вот и просрали еще целых четыре байта не пойми на что:) А если сделать void main(void) то останется только RET, но появится варнинг, что мол у нас функция main ничего не возвращает. В общем, поступай как хошь:)

Сложно? Вроде бы нет. Пощелкай пошаговое исполнение в режиме дизассемблера и позырь как процессор выполняет отдельные инструкции, что при этом происходит с регистрами. Как происходит перемещение по командам и итоговое зацикливание.

Продолжение следует через пару дней …

Offtop:
Alexei78 сварганил плагинчик для файрфокса облегчающий навигацию по моему сайту и форуму.
Обсуждение и скачивание,

Микроконтроллеры являются небольшими, но одновременно очень удобными приспособлениями для тех, кто желает создавать различные удивительные роботизированные или автоматизированные вещи у себя дома. В рамках этой статьи будет рассмотрено программирование AVR для начинающих, различные аспекты и нюансы этого процесса.

Общая информация

Микроконтроллеры можно встретить везде. Они есть в холодильниках, стиральных машинах, телефонах, станках на производстве, умных домах и ещё во множестве различных технических устройств. Их повсеместное применение обусловлено возможностью замены более сложных и масштабных аналоговых схем устройств. Программирование МК AVR позволяет обеспечить автономное управление над электронными устройствами. Эти микроконтроллеры можно представить как простейший компьютер, что может взаимодействовать с внешней техникой. Так, им под силу открывать/закрывать транзисторы, получать данные с датчиков и выводить их на экраны. Также микроконтроллеры могут осуществлять различную обработку входной информации подобно персональному компьютеру. Если освоить программирование AVR с нуля и дойти до уровня профессионала, то откроются практически безграничные возможности для управления различными устройствами с помощью портов ввода/вывода, а также изменения их кода.

Немного о AVR

В рамках статьи будет рассмотрено семейство микроконтроллеров, выпускаемых фирмой Atmel. Они имеют довольно неплохую производительность, что позволяет использовать их во многих любительских устройствах. Широко применяются и в промышленности. Можно встретить в такой технике:

  1. Бытовой. Стиральные машины, холодильники, микроволновые печи и прочее.
  2. Мобильной. Роботы, средства связи и так далее.
  3. Вычислительной. Системы управления периферийными устройствами, материнские платы.
  4. Развлекательной. Украшения и детские игрушки.
  5. Транспорт. Системы безопасности и управления двигателем автомобиля.
  6. Промышленное оборудование. Системы управления станками.

Это, конечно же, не все сферы. Они применяются там, где выгодно использовать не набор управляющих микросхем, а один микроконтроллер. Это возможно благодаря низкому энергопотреблению и Для написания программ используются языки С и Assembler, немного изменённые под семейство микроконтроллеров. Такие изменение необходимы из-за слабых вычислительных возможностей, которые исчисляются, как правило, в десятках килобайт. AVR-программирование без изучения этих языков не представляется возможным.

Как получить свой первый микроконтроллер?

AVR-программирование требует:

  1. Наличия необходимой среды разработки.
  2. Собственно самих микроконтроллеров.

Второй пункт рассмотрим подробнее. Существует три возможности обзавестись требуемым устройством:

  1. Купить непосредственно сам микроконтроллер.
  2. Обзавестись устройством в составе конструктора (например - Arduino).
  3. Собрать микроконтроллер самостоятельно.

В первом пункте ничего сложного нет, поэтому сразу перейдём ко второму и третьему.

Обзавестись устройством в составе конструктора

В качестве примера будет выбран известный Arduino. Это по совместительству удобная платформа для быстрой и качественной разработки различных электронных устройств. Плата Arduino включает в себя определённый набор компонентов для работы (существуют различные конфигурации). В неё обязательно входит AVR-контроллер. Этот подход позволяет быстро начать разработку устройства, не требует специальных умений и навыков, имеет значительные возможности в плане подключения дополнительных плат, а также в интернете можно найти много информации на интересующие вопросы. Но не обошлось и без минусов. Покупая Arduino, человек лишает себя возможности более глубоко окунуться в AVR-программирование, лучше узнать микроконтроллер, специфику его работы. Также негатива добавляет и относительно узкая линейка моделей, из-за чего часто приходится покупать платы под конкретные задачи. Особенностью также является и то, что программирование на "СИ" здесь отличается довольно сильно от стандартной формы. Несмотря на все свои недостатки, Arduino подходит для изучения новичкам. Но злоупотреблять не стоит.

Самостоятельная сборка

Следует отметить, что микроконтроллеры AVR отличаются достаточной дружелюбностью к новичкам. Собрать их самостоятельно можно с доступных, простых и дешевых комплектующих. Если говорить о плюсах, то такой подход позволяет лучше ознакомиться с устройством, самостоятельно выбирать необходимые комплектующие, подгоняя конечный результат под выдвигаемые требования, использование стандартных языков программирования и дешевизна. Из минусов можно отметить только сложность самостоятельной сборки, когда она осуществляется впервые, и нет нужных знаний и навыков.

Как работать?

Итак, допустим, что вопрос с микроконтроллером решился. Далее будет считаться, что он был приобретён или же куплен самостоятельно. Что ещё нужно, чтобы освоить AVR-программирование? Для этой цели нужна среда разработки (в качестве базиса подойдёт и обычный блокнот, но рекомендую остановиться на Notepad++). Хотя существуют и другие программы для программирования AVR, приведённое обеспечение сможет справиться со всеми требованиями. Также необходим программатор. Его можно приобрести в ближайшем магазине, заказать по интернету или собрать самостоятельно. Не помешает и печатная плата. Она не обязательна, но её использование позволяет сэкономить свои нервы и время. Также покупается/создаётся самостоятельно. И последнее - это источник питания. Для AVR необходимо обеспечить поступление напряжения на 5В.

Где и как учиться?

Создавать шедевры с нуля не получиться. Здесь необходимы знания, опыт и практика. Но где их взять? Существует несколько путей. Первоначально можно самостоятельно выискивать нужную информацию в мировой сети. Можно записать на курсы программирования (дистанционные или очные) для получения базовых навыков работы. Каждый подход имеет свои преимущества. Так, дистанционные курсы программирования будут более дешевыми, а может и бесплатными. Но если что-то не будет получаться, то при очных занятиях опытный разработчик сможет быстрее найти причину проблемы. Также не лишним будет ознакомиться с литературой, что находится в свободном доступе. Конечно, на одних книгах выехать не получится, но получить базовые знания про устройство, программирование на "СИ", "Ассемблере" и о других рабочих моментах можно.

Порты ввода/вывода

Это чрезвычайно важная тема. Без понимания того, как работают порты ввода/вывода, не представляется возможным внутрисхемное программирование AVR вообще. Ведь взаимодействие микроконтроллера с внешними устройствами осуществляется именно при их посредничестве. На первый взгляд новичка может показаться, что порт - это довольно запутанный механизм. Чтобы избежать такого впечатления, не будем детально рассматривать схему его работы, а только получим общее представление об этом. Рассмотрим программную реализацию. В качестве примера устройства был выбран микроконтроллер AtMega8 - один из самых популярных из всего семейства AVR. Порт ввода/вывода представляет собой три регистра, которые отвечают за его работу. На физическом уровне они реализовываются как ножки. Каждой из них соответствует определённый бит в управляющем реестре. Каждая ножка может работать как для ввода информации, так и для её вывода. Например, на неё можно повесить функцию зажигания светодиода или обработку нажатия кнопки. Кстати, три регистра, о которых говорилось, это: PORTx, PINx и DDRx. Каждый из них является восьмиразрядным (не забываем, что мы рассматриваем AtMega8). То есть один бит занимается определённой ножкой.

Работа регистров

Наиболее весомым в плане ориентации является управляющий DDRx. Он также является восьмиразрядным. Значения для него могут быть записаны 0 или 1. Как меняется работа контроллера при использовании нулей и единицы? Если в определённом бите выставить 0, то соответствующая ему ножка будет переключена в режим входа. И с неё можно будет считывать данные, что идут с внешних устройств. Если установить 1, то микроконтроллер сможет управлять чем-то (например, дать приказ транзистору пропустить напряжение и зажечь светодиод). Вторым по важности является PORTx. Он занимается управлением состояния ножки. Давайте рассмотрим пример. Допустим, у нас есть порт вывода. Если мы устанавливаем логическую единицу в PORTx, то посылается сигнал от микроконтроллера управляющему устройству начать работу. Например, зажечь светодиод. При установлении нуля он будет гаситься. То есть работать с управляющим регистром DDRx постоянно, нет надобности. И напоследок давайте о PINx. Этот регистр отвечает за отображение состояния ножки контроллера, когда она настроена на состояние ввода. Следует отметить, что PINx может работать исключительно в режиме чтения. Записать в него ничего не получится. Но вот прочитать текущее состояние ножки - это без проблем.

Работа с аналогами

AVR не являются единственными микроконтроллерами. Этот рынок поделен между несколькими крупными производителями, а также между многочисленными китайскими имитирующими устройствами и самоделками. Во многом они подобны. К примеру, программирование PIC/AVR сильно не отличается. И если есть понимание чего-то одного, то понять всё остальное будет легко. Но начинать путь рекомендуем всё же с AVR благодаря его грамотной структуре, дружелюбности к разработчику и наличию большого количества вспомогательных материалов, из-за чего процесс разработки можно значительно ускорить.

Техника безопасности

Когда будет вестись программирование микроконтроллеров AVR на "СИ" или на "Ассемблере", то необходимо работать очень осторожно. Дело в том, что выставив определённую комбинацию регистров и изменив внутренние настройки, можно спокойно заблокировать микроконтроллер. Особенно это касается фьюзов. Если нет уверенности в правильности своих действий, то лучше отказаться от их использования. Это же относится и к программаторам. Если покупать заводскую аппаратуру, то она будет прошивать микроконтроллеры без проблем. При сборке своими руками может возникнуть печальная ситуация, при которой программатор заблокирует устройство. Это может произойти как из-за ошибки в программном коде, так и через неполадки в нём самом. Кстати, об ещё одном (на этот раз позитивном) моменте, который ранее вскользь упоминался, но так и не был раскрыт полностью. Сейчас практически все современные микроконтроллеры обладают функцией внутрисхемного программирования. Что это значит? Допустим, что устройство было запаяно на плате. И чтобы сменить его прошивку, сейчас не нужно его выпаивать, ведь такое вмешательство может повредить сам микроконтроллер. Достаточно подключиться к соответствующим выводам и перепрограммировать его при их посредстве.

Какую модель выбрать?

В рамках статьи была рассмотрена AtMega8. Это довольно посредственный за своими характеристиками микроконтроллер, которого, тем не менее, хватает для большинства поделок. Если есть желание создать что-то масштабное, то можно брать уже своеобразных монстров вроде Atmega128. Но они рассчитаны на более опытных разработчиков. Поэтому, если нет достаточного количества опыта, то лучше начинать с небольших и простых устройств. К тому же они и значительно дешевле. Согласитесь, одно дело случайно заблокировать микроконтроллер за сто рублей, а совсем иное - за полтысячи. Лучше набить себе руку и разобраться в различных аспектах функционирования, чтобы в последующем не терять значительные суммы. Первоначально можно начать с AtMega8, а потом уже ориентироваться по своим потребностям.

Заключение

Вот и была рассмотрена тема программирования AVR в самых общих чертах. Конечно, ещё о многом можно рассказывать. Так, к примеру, не было рассмотрено маркирование микроконтроллеров. А оно может о многом сказать. Так, в основном микроконтроллеры работают на напряжении в 5В. Тогда как наличие, к примеру, буквы L может сказать о том, что для работы устройства достаточно только 2,7 В. Как видите, порой знания о маркировке могут сыграть очень важную роль в плане корректной и долговечной работы устройств. Время функционирования микроконтроллеров - это тоже интересная тема. Каждое устройство рассчитано на определённый период. Так, некоторые могут отработать тысячу часов. Другие же имеют гарантийный запас в 10 000!

Я категорически против такого подхода. Обычно это все заканчивается - либо ничем, либо забитые форумы с мольбами помочь. Даже если кому то помогают, то в 90% он больше никогда не всплывет на сайтах по электронике. В остальных 10% он так и продолжает заливать форумы мольбами, его будут сначала пинать, затем поливать грязью. Из этих 10% отсеивается еще 9%. Далее два варианта: либо таки до глупой головы доходит и все же происходит goto к началу, либо в особо запущенных вариантах, его удел копировать чужие конструкции, без единой мысли о том как это работает. Из последних зачастую рождаются ардуинщики.

Путь с нуля на мой взгляд заключается в изучении периферии и особенностей, если это микроконтроллер. Правильнее сначала разобраться с тем как дрыгать ножками, потом с таймерами, затем интерфейсами. И только тогда пытаться поднимать свой FAT. Да это не быстро, да это потребует времени и усилий, но практика показывает, как бы вы не пытались сократить этот путь, все равно всплывут проблемы, которые придется решать и время вы потратите куда больше, не имея этой базы.

Только не нужно путать теплое и мягкое. Первое - из всех правил есть исключения, лично видел людей, которые в руках раньше не держали микроконтроллеров, но за крайне короткий срок смогли обскакать бывалых опытных радиолюбителей, их в расчет не берем. Второе - мне попадались личности, которые начинали с копирования схем и сходу разбирались, но скорее это тоже исключение из правил. Третье - и среди ардуинщиков попадаются опытные программисты, это ведь всего навсего платформа, но и это скорее исключение.

Если говорить об общей массе, то дела обстоят именно так как я описал вначале: нежелание разбираться с основами, в лучшем случае оттягивает момент того, когда придется вернуться к этим вопросам. В худшем случае, вы быстро упретесь в потолок своих знаний и все время винить в своих проблемах кого то другого.

2. Перед решением задачи, дробите ее до абсурда вплоть до «припаять резистор», это помогает, проверено. Мелкие задачи решать куда проще. Когда большая задача разбита на кучу мелких действий, то все что остается - это выполнить их. Могу привести еще один годный совет, хоть он вам и покажется бредовым - заведите блокнотик и пишите в него все что собираетесь сделать. Вы думаете, итак запомню, но нет. Допустим сегодня у меня хорошее настроение и думаю о том, как собрать плату. Запиши план действий: сходить купить резистор, подготовить провода, сделать крепление дисплея. Потом все забудешь, откроешь блокнотик и смотришь - ага сегодня настроение попилить и построгать, сделаю крепление. Или собираешь ты плату и уже осталось допаять последний компонент, но не тут то было резисторы кончились, вот записал бы перед тем как паять, то вспомнил.

3. Не пользуйтесь кодогенераторами, нестандартными фичами и прочими упрощалками, хотя бы на первых этапах. Могу привести свой личный пример. Во времена активного использования AVR я пользовался кодогеном CAVR. Меня он полностью устраивал, хотя все говорили, что он кака. Звоночки звенели постоянно, были проблемы с библиотеками, с синтаксисом, с портированием, но было тяжело от этого отказаться. Я не разбирался как это работает, просто знал где и как поставить галочки.

Кол в мой гроб был вбит с появлением STM32, нужно было обязательно переползать на них, вот тогда то и появились проблемы. Проблемы мягко сказано, фактически мне пришлось осваивать микроконтроллеры и язык Си с нуля. Больше я не повторял прошлых ошибок. Надо сказать это уже пригодилось и не один раз. С тех пор мне довелось поработать с другими платформами и никаких затруднений не испытываю, подход оправдывает себя.

По поводу всех улучшалок и упрощалок, было одно очень хорошее сравнение, что они подобны инвалидным коляскам, которые едут по рельсам, можно ехать и наслаждаться, но вставать нельзя, куда везут - туда и приедешь.

4. Изучайте язык Си. Эх, как же часто я слышу, как начинающие радиолюбители хвалятся, что хорошо знают сишку. Для меня это стало кормом, всегда люблю проконсультироваться у таких собеседников. Обычно сразу выясняется, что язык они совершенно не знают. Могу сказать, что не смотря на кажущуюся простоту, людей которые действительно хорошо бы его знали, встречал не так много. В основном все его знают на столько, на сколько требуется для решения задач.

Однако, проблема на мой взгляд заключается в том, что не зная возможностей, вы сильно ограничиваете себя. С одной стороны не оптимальные решения, которые потребуют более мощного железа, с другой стороны не читаемый код, который сложно поддерживать. На мой взгляд, читаемость и поддерживаемость кода занимает одно из важнейших мест и мне сложно представить, как можно этого добиться не используя все возможности языка Си.

Очень многие начинающие брезгуют изучением языка, поэтому если вы не будете как все, то сразу станете на две ступени выше остальных новичков. Так же не никакой разницы, где изучать язык. На мой взгляд, микроконтроллер для этого не очень подходит. Гораздо проще поставить какую нибудь Visual studio или Qt Creator и порешать задачки в командной строке.

Хорошим подспорьем будет также изучение всяких тестов по языку, которые дают при собеседованиях. Если порыться то можно много нового узнать.

5. Изучение ассемблера? Бояться его не нужно, равно как и боготворить. Не нужно думать, что умея написать программу на ассемблере, вы сразу станете гуру микроконтроллеров, почему то это частое заблуждение. В первую очередь это инструмент. Даже если вы не планируете использовать его, то все равно я бы настоятельно рекомендовал написать хотя бы пару программ. Это сильно упростит понимание работы микроконтроллера и внутреннего устройства программ.

6. Читайте даташит. Многие разработчики, пренебрегают этим. Изучая даташит вы будете на две ступени выше тех разработчиков. Делать это крайне полезно, во первых это первоисточник, какие бы сайты вы не читали, в большинстве случаев они повторяют информацию из даташита, зачастую с ошибками и недосказанностями. Кроме того, там может находиться информация, о которой вы не задумываетесь сейчас, но которая может пригодиться в будущем. Может статься так, что вылезет какая то ошибка и вы вспомните что да, в даташите об этом было сказано. Если ваша цель стать хорошим разработчиком, то этого этапа не избежать, читать даташиты придется, чем раньше вы начнете это делать, тем быстрее пойдет рост.

7. Часто народ просит прислать даташит на русском. Даташит - это то, что должно восприниматься как истина, самая верная информация. Даже там не исключены ошибки. Если к этому добавятся ошибки переводчика, он ведь тоже человек, может даже не нарочно, просто опечататься. Либо у него свое видение, может что-то упустить, на его взгляд не важное, но возможно крайне важное для вас. Особенно смешной становится ситуация, когда нужно найти документацию на не сильно популярные компоненты.

На мой взгляд, намного проще исключить заранее весь слой этих проблем, чем вылавливать их потом. Поэтому я категорически против переводов, единственный верный совет - изучайте английский язык, чтобы читать даташиты и мануалы в оригинале. Понять смысл фразы с помощью программ переводчиков можно, даже если уровень вашего языка полный ноль.

Мною был проведен эксперимент: в наличии был студент, даташит и гугл переводчик. Эксперимент №1: студенту вручен даташит и дано задание самостоятельно найти нужные значения, результат - «да как я смогу», «да я не знаю английский», «я ничего не нашел/я не понял» типичные фразы, говорящие о том, что он даже не пытался. Эксперимент №2: тому же студенту, вручен все тот же даташит и тоже задание, с той разницей, что я сел рядом. Результат - через 5 минут он сам нашел все нужные значения, абсолютно без моего участия, без знания английского.

8. Изобретайте велосипед. Например, изучаете какую то новую штуку, допустим транзистор, дядька Хоровиц со страниц своей книги авторитетно заявляет, что транзистор усиливает, всегда говорите - НЕ ВЕРЮ. Берем в руки транзистор включаем его в схему и убеждаемся что это действительно так. Есть целый пласт проблем и тонкостей, которые не описываются в книгах. Прочувствовать их можно только, когда возьмешь в руки и попробуешь собрать. При этом получаем кучу попутных знаний, узнаем тонкости. Кроме того, любая теория без практики забудется намного быстрее.

На первоначальном этапе, мне очень сильно помог один метод - сначала собираешь схему и смотришь как она работает, а затем пытаешься найти обоснование в книге. То же самое и с программной частью, когда есть готовая программа, то проще разобраться в ней и соотнести куски кода, какой за что отвечает.

Также важно выходить за рамки дозволенного, подать побольше/поменьше напряжение, делать больше/меньше резисторы и следить за изменениями в работе схемы. В мозгу все это остается и оно пригодится в будущем. Да это чревато расходом компонентов, но я считаю это неизбежным. Первое время я сидел и палил все подряд, но теперь перед тем как поставить тот или иной номинал, всегда вспоминаю те веселые времена и последствия того, если поставить неверный номинал.

9. А как бы я сделал это, если бы находился на месте разработчиков? Могу ли я сделать лучше? Каждый раз задавайте себе эти вопросы, это очень хорошо помогает продвигаться в обучении. Например, изучите интерфейсы 1wire, i2c, spi, uart, а потом подумайте чем они отличаются, можно ли было сделать лучше, это поможет осознать почему все именно так, а не иначе. Так же вы будете осознавать, когда и какой лучше применить.

10. Не ограничивайтесь в технологиях. Важно что этот совет имеет очень тонкую грань. Был этап в жизни, когда из каждой подворотни доносилось «надо бы знать ПЛИС», «а вот на ПЛИС то можно сделать». Формально у меня не было целей изучать ПЛИСины, но и пройти мимо было никак нельзя. Этому вопросу было выделено немного времени на ознакомление. Время не прошло зря, у меня был целый ряд вопросов, касаемых внутреннего устройства микроконтроллеров, именно после общения с плисинами я получил ответы на них. Подобных примеров много, все знания, которые я приобретал в том или ином виде, рано или поздно пригодились. У меня нет ни единого бесполезного примера.

Но как было сказано, вопрос технологий имеет тонкую грань. Не нужно хвататься за все подряд. В электронике много направлений. Может вам нравится аналог, может цифра, может вы специалист по источникам питания. Если не понятно, то попробуйте себя везде, но практика показывает, что вначале лучше сконцентрироваться на чем то конкретном. Даже если нужно жать в нескольких направлениях, то лучше делать это ступеньками, сначала продавить что то одно.

11. Если спросить начинающего радиолюбителя, что ему больше нравится программирование или схемотехника, то с вероятностью 99% ответ будет программирование. При этом большую часть времени эти программисты тратят на изготовление плат ЛУТом/фоторезистом. Причины в общем то понятны, но довольно часто это переходит в некий маразм, который состоит в изготовлении плат ради изготовления плат.

В интернетах практически единственный трушный путь к программированию это стать джедаем изготовления печатных плат. Я тоже прошел через этот путь, но каждый раз задаю себе вопрос зачем? С тех пор, как я приобрел себе пару плат, на все случаи жизни, каждый раз думаю о том, что мог бы спокойно прожить все это время без самодельных плат. Мой совет, если есть хоть капля сомнений, то лучше не заморачиваться и взять готовую отладочную плату, а время и средства лучше бы потратить на программирование.

12. Следующий совет, особенно болезненный, мне очень не хочется его обсуждать, но надо. Часто мне пишут, мол ххх руб за ууу дорого, где бы подешевле достать. Вроде бы обычный вопрос, но обычно я сразу напрягаюсь от него, так как зачастую он переходит в бесконечные жалобы на отсутствие денег. У меня всегда возникает вопрос: почему бы не оторвать пятую точку и не пойти работать? Хоть в тот же макдак, хоть на стройку, потерпеть месяц, зато потом можно приобрести парочку плат, которых хватит на ближайший год. Да я знаю, что маленьких городах и селах сложно найти работу, переезжайте в большой город. Работайте на удаленке, в общем нужно крутиться. Просто жаловаться нет смысла, выход из ситуации есть, кто ищет его тот находит.

13. В ту же копилку внесу очень болезненный вопрос инструмента. Инструмент должен позволять вам максимально быстро разрабатывать устройства. Почему то очень многие разработчики не ценят свое время. Типичный пример, дешевая обжимка для клемм, на которой так любят экономить многие работодатели. Проблема в том, что она даже обжимает не правильно, из-за этого провода вываливаются. Приходится производить кучу дополнительных манипуляций, соответственно тратить время. Но как известно дурак платит трижды, поэтому низкая цена кримпера возрастет во много раз, за счет затрачиваемого времени и плохого качества обжима.

Не говорю что дешевое = плохое, нет - все зависит от ситуации. Вернусь к примеру кримпера, было время когда обжимал чем попало, поэтому часто возникали проблемы. Особенно неприятно, когда заводишь плату и она не работает, после долгих поисков ошибки понимаешь что из-за плохо обжатого проводочка, обидно. С тех пор как появилась нормальная обжимка этих проблем нет. Да внутренняя жаба и квакала, и душилась от ее стоимости, но ни разу не пожалел об этом решении. Все что я хочу сказать, что поработав с нормальным инструментом, совершенно не хочется возвращаться к плохому, даже не хочется обсуждать это. Как показывает практика, лучше не экономить на инструментах, если сомневаетесь - возьмите у кого нибудь потестить, почитайте отзывы, обзоры.

14. Заведите сайт, можно писать на нем, что угодно, просто как записки. Практика показывает, что работодатели все равно его не читают, но сам факт производит большой эффект.

15. Тонкий вопрос: профильное высшее образование, нужно ли оно? Мне известны не единичные случаи, когда люди работали абсолютно без образования и по опыту и знаниям они могли дать прикурить любому дипломированному специалисту. Собственно, у меня нет профильного образования, испытываю ли я от этого дискомфорт? В определенной степени да.

Еще в самом начале, когда микроконтроллеры были для меня хобби, я много помогал с курсовыми и дипломами разных вузов, просто чтобы оценить свой уровень. Могу сказать уверенно, что уровень в целом невысок вне зависимости от имени вуза. Учиться несколько лет, для того чтобы написать такой диплом, совершенно необязательно. Достигнуть этого можно самостоятельно за весьма короткий срок. И все же зачастую бывали моменты, когда студенты знали какой то предмет, который они проходили на 2-3 курсе, а я этого не знал. Хоть все эти знания и компенсировались самообразованием, но все же лучше было бы не тратить на это время.

Вуз ради бумажки. Могу сказать, что были и такие ситуации, когда предлагали работу, которая требовала обязательного наличия образования и было обидно, что именно в тот момент бумажки не было. Но в целом, история показывает, что большинству работодателей наплевать на вашу бумажку.

Следующий момент довольно часто не учитывается, это окружение. Не забывайте, что люди, с которыми вы учитесь это ваше поколение, не исключено что вам с ними работать. Количество фирм работающих в одной отрасли сильно ограничено. Практика показывает, что даже в больших городах все и все друг о друге знают, вплоть до интимных подробностей.

Еще один момент это возможности. Зачастую у вузов есть свои возможности - оборудование, может какие то секции, может какие то программы работы за рубежом, этим нужно пользоваться, если есть хоть малейшая возможность. Если в вузе вы не видите перспективы, идите в другой, мир на каком то одном не заканчивается.

Если подытожить то совет таков: если есть хоть малейшая возможность - нужно идти учиться, обязательно по профилю, если есть хоть какие то шансы, то лезть везде, а не отсиживать штаны на задней парте. Заводить знакомства, параллельно дома самому практиковаться, развиваться.

16. Поздно ли начинать программировать в 20, 30, 40, 50 лет? Практика других людей показывает, что возраст вообще не помеха. Многие почему то не учитывают то, что есть целый пласт работы, которую молодые в силу своих амбиций не хотят делать. Поэтому работодатели предпочитают брать тех, кто будет ее тащить. Это ваш шанс зацепиться, а дальше все зависит только от вас.

И последний совет. Многие радиолюбители необщительные, сердитые и раздражительные - считайте это спецификой работы. Излучайте добро и позитив, будьте хорошим человеком.